yhwdisplay

CHIMEI INNOLUX DISPLAY CORPORATION LCD MODULE APPLICATION NOTE Customer: 宇华微科技 LCD SIZE: <u>3.5"D</u> Date: <u>2010.07.28</u> Version: A Remark ■ Single Power

Chimei Innolux Display Corporation
Industry District 10, LongHua, Shen, Ch
T.L +86-0755-27706888

David Tang

2010/07/28

Chunyan.Huang

Hans Chen

2010/07/28

Page1

2010/07/28

Chunyan Huang

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用. The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.

Record of Revision

Version	Revise Date	Page	Content
А	2010/07/28		Initial Release

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用. The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.

1. Module Introduction

1.1 Module Photo

	Module Photo						
Module Name	Top Side	Bottom Side					
LQ035NC111							

1.2 Module Comparison Table

Module Name	Brightness(nits)	Pin Num.	Recommended Connector	
LQ035NC111	300	54 Pins	FH28-54S-0.5SH(05)	

2. Pin Assignment Table

Pin No.	Symbol	Function	Remark
1	LED-	Backlight LED Ground	
2	LED-	Backlight LED Ground	
3	LED+	Backlight LED Power	
4	LED+	Backlight LED Power	
5	NC	Not Use	
6	NC	Not Use	

Chunyan.Huang

Page3

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用.

7	NC	Not Use	
8	/RESET	Hardware Reset	
9	SPENA	SPI Interface Data Enable Signal	Note3
10	SPCLK	SPI Interface Data Clock	Note3
11	SPDAT	SPI Interface Data	Note3
12	B0	Blue Data Bit 0	
13	B1	Blue Data Bit 1	
14	B2	Blue Data Bit 2	
15	В3	Blue Data Bit 3	
16	B4	Blue Data Bit 4	
17	B5	Blue Data Bit 5	
18	B6	Blue Data Bit 6	0
19	B7	Blue Data Bit 7	
20	GO	Green Data Bit 0	
21	G1	Green Data Bit 1	
22	G2	Green Data Bit 2	
23	G3	Green Data Bit 3	
24	G4	Green Data Bit 4	
25	G5	Green Data Bit 5	
26	G6	Green Data Bit 6	
27	G7	Green Data Bit 7	
28	R0	Red Data Bit0 /DX0	Note4
29	R1	Red Data Bit1 /DX1	Note4
30	R2	Red Data Bit2 /DX2	Note4
31	R3	Red Data Bit3 /DX3	Note4
32	R4	Red Data Bit4 /DX4	Note4
33	R5	Red Data Bit5 /DX5	Note4

Chunyan.Huang

Page4

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用. The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.

34	R6	Red Data Bit6/DX6	Note4
35	R7	Red Data Bit7 /DX7	Note4
36	HSYNC	Horizontal Sync Input	
37	VSYNC	Vertical Sync Input	
38	DCLK	Dot Data Clock	
39	NC	Not Use	U
40	NC	Not Use	4
41	VCC	Digital Power	
42	VCC	Digital Power	
43	NC	Not Use	
44	NC	Not Use	
45	NC	Internal test use	
46	NC	Not Use	0
47	NC	Internal test use	
48	SEL2	Control the input data format /floating	Note1
49	SEL1	Control the input data format	Note1
50	SEL0	Control the input data format	Note1
51	NC	Not Use	
52	DE	Data Enable Input	Note2
53	DGND	Ground	
54	AVSS		

Note:

The mode control (SEL2) not use, it can't control CCIR601 interface. If not use CCIR601, it can floating
 For digital RGB input data format, both SYNC mode and DE+SYNC mode are supported. If DE signal is fixed now, SYNC mode is used. Otherwise, DE+SYNC mode is used. Suggest used SYNC mode.
 Suggest the DE signal usually pull low.

3. Usually pull high.

4. IF select serial RGB or CCIR601/656 input mode is selected, only DX0-DX7 used, and the other short to

GND, only selected serial RGB < CCIR601/656 interface, DX BUS will enable. Digital input mode DX0 is LSB and DX7 is MSB.

3. Power & Timing Characteristic

3.1. Power Sequence

Customer should follow our product power sequence, other it would lead to display abnormal, please refer to the figures as below.

Power On:

Remark : Customer should follow every time, otherwise it maybe lead to display abnormal, you can refer our reference circuit.

3.2 Power Operation Conditions

Customer should notice the red mark specially, if you do not follow it, it would lead to display abnormal.

Parameter	Symbol	Rating			Unit	Condition
Falameter	Symbol	Min.	Тур.	. Max.	Unit	Condition
Power Voltage	VCC	3.0	3.3	3.6	V	
Digital Operation Current	lcc		8.6	5 <u>-</u> 2	mA	
Gate On Power	VGH		13.9		V	
Gate Off Power	VGL	-	-13.6	-	V	
Vcom High Voltage	VcomH	-	3.9	-	V	Note1
Vcom low Voltage	VcomL	-	-1.2	-	V	Note1
Vcom level max	VcomA	-	-	6	V	

Note1. VcomH& VcomL : Adjust the color with gamma data. Vp-p should be higher then 4V.(Option 5V)

	Boromotor	Symbol	Rating			Linit	Condition
	Falailletei	Symbol	Min.	Тур.	Max.	Onit	Condition
	Low level input voltage	V _{IL}	0	-	0.3 VCC	V	
\leq	Hight level input voltage	V _{IH}	0.7 VCC	-	VCC	V	

Chunyan.Huang

Page6

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited. 版權屬於奇美電子所有 禁止任何未經授權的使用.

3.3 Timing Description

Our LCM has integrated T-con IC into our driver IC, so customer only input DCLK, HS, VS, DE and R/G/B data signals to our LCM from their system solution. But these signals must follow our timing specification. Otherwise the LCM will display abnormally.

We provide the Timing Drawing and Timing Formula for customer to how to set their parameters of LCD controller. About the detail timing parameters of LCD display, please follow the product specification.

(Unit : Hz)

Remark:

1. Fhsync is Hsync frequency, and Fvsync is Vsync frequency.

2. Parameter Table .

Fhsync = (Vw+ Vbp + Va +Vfp)*Fvsync

Parameter	Parameter Description			
Hw	Hsync Width	DCLK		
Hbp	Horizontal back porch	DCLK		
Ha	Horizontal valid area	DCLK		

Chunyan.Huang

Page7

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用.

Hfp	Horizontal front porch	DCLK
Vw	Vsync Width	Hsync(Line)
Vbp	Vertical back porch	Hsync(Line)
Va	Vertical valid area	Hsync(Line)
Vfp	Vertical front porch	Hsync(Line)
DCLK	Dot clock	Hz

4. Software Introduce

4.1 SPI Timing Characteristics

We suggest our customer refer to the below drawing to design SPI circuit. There are some special registers in the driver IC of 3.5" QVGA product. We must use Pin SPENA, SPCK, SPDA to set these registers. Only if set the correct value in these registers that the product will be displayed normally. Please refer to the product specification to set these values.

Customer system

3.5" QVGA products using the 3-wire serial port as communication interface for all the function and parameter setting. 3-wire communication can be bi-directional controlled by the "R/W" bit in address field. These products 3-Wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-wire bus itself.

Under read mode, 3-Wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SPCK by external controller. Data in the "Hi-Z phase" will be ignored by 3-Wire engine during write operation, and should be ignored during read operation

Page8						
Chunyan.Huang	2010/07/28					
The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.						
版權屬於奇美電子所有 禁止任何未經授權的使用.						
The copyright belongs to Chimei InnoLux . Any unauthorized use is	prohibited.					

also. During read operation, external controller should float SPDA pin under "Hi-Z phase" and "Data phase".

Each Read/Write operation should be exactly 16bit. To prevent form incorrect setting of the internal register any write operation with more of less the 16 bit data during a SPENB Low period will be ignored by 3-Wire engine.

4.2 Register Setting Table

Reg#	Hex Code	Register Bit Value
R01h	XX00	RL=X REV=X PINV=X BGR=X SM="0" TB=X CPE=X
R02h	0200	B/C = "1"
R03h	6364	DCT = "0110" BT = "011" BTF = "0" DC = "0110" AP = "010"
R04h	04XX	PALM = "1" BLT = "00" OEA = note 2 SEL = X SWD = X
R05h		GHN="1" XDK="0" GDIS="1" LPF="1" DEP="0" CKP="1" VSP= note 2 HSP="0" DEO="1" DIT="1" PWM="0" FB="100"
R0Ah	4008	BR = "1000000" CON = "01000"
R0Bh	D400	NO = "11" SDT = "01" EQ = "100"
R0Dh	3229	VRC = "011" VDS = "10" VRH = "101001"
R0Eh	3200	VDV = "1001000"
R0Fh	0000	SCN = "00000000"
R16h	9F80	XLIM = "100111111"
R17h		STH = "00" HBP = note 2 VBP = note 2
R1Eh	0052	nOTP = "0" VCM = "1010010"
R30h	0000	PKP1 = "000" PKP0 = "000"
R31h	0407	PKP3 = "100" PKP2 = "111"
R32h	0202	PKP5 = "010" PKP4 = "010"
R33h	0000	PRP1 = "000" PRP0 = "000"
R34h	0505	PKN1 = "101" PKN0 = "101"
R35h	0003	PKN3 = "000" PKN2 = "011"
R36h	0707	PKN5 = "111" PKN4 = "111"
R37h	0000	PRN1 = "000" PRN0 = "000"
R3Ah	0904	VRP1 = "01001" VBP0 = "0100"
R3Bh	0904	VRN1 = "01001" VRN0 = "0100"

Note: (1) X means the bit is refer to the logic stage of the corresponding hardware pin. (2) The default values of the VSP · OEA · HBP · VBP are automatically set by SEL.

Chunyan.Huang

Page9

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用.

4.3 Register Function Description

4.3.1 Register Bit Definition

Reg#	Register	R/W	R/S	IB15	1B14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
SR	Status Read	1	0	L7	L6	L5	L4	L3	L2	L1	LO	0	0	0	0	0	0	0	0
R01h	Driver output control	0	1	0	RL	REV	PINV	BGR	SM	тв	CPE	0	0	0	0	0	0	0	0
R02h	LCD driver AC control	0	1	0	0	0	0	0	0	B/C	0	0	0	0	0	0	0	0	0
R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BTF	BT2	BT1	BT0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
R04h	Data and color filter control	0	1	0	0	0	0	0	PALM	BLT1	BLT0	OEA1	OEA0	SEL2	SEL1	SEL0	SW D2	SWD1	SWD0
R05h	Function	0	1	GHN	XDK	GDIS	LPF	DEP	CKP	VSP	HSP	DEO	DIT	0	PWM	0	FB2	FB1	FB0
R06h	Reserved									Re	served			11	2.	V			8
R07h	Reserved									Re	served		0	LV1	DZ				
R0Ah	Contrast/ Brightness control	0	1	0	BR6	BR5	BR4	BR3	BR2	BR1	BR0	0	3	0	CON4	CON3	CON2	CON1	CON0
R0Bh	Frame cycle control	0	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	0	0	~	0	0	0	0	0
R0Dh	Power control (2)	0	1	0	VRC2	VRC1	VRC0	0	0	VDS1	VDS0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0
R0Eh	Power control (3)	0	1	0	0	1	VDV6	VDV5	VDV4	VDV3	VDV2	VDV1	VDVO	%	0	0	0	0	0
R0Fh	Gate scan starting Position	0	t	0	0	0	0	0	0	00	0	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
R16h	Horizontal Porch	0	1	XLIM8	XLIM7	XLIM6	XLIM5	XLIM4	XLIM3	XLIM2	XLIM1	XLIM0	$\langle \langle \langle \rangle \rangle$))) •	10	0	0	0	0
R17h	Vertical Porch	0	1	STH1	STH0	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBPO	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
R1Eh	Power control (4)	0	1	0	0	0	0	0	6	\geq_0	0	nOTP	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
R27h	Reserved							10	V	Re	served	0							
R28h	Reserved							1	11	Re	served	11							8
R29h	Reserved	L					12	5	/	Re	served	/							
R2Bh	Reserved	-	1000				((0	DVD		served	ř			<u> </u>		DVD	DVD	DVD
R30h	γ control (1)	0	1	0	0	0	10	0	12	SH	0 10	0	0	0	0	0	02	01	00
R31h	γ control (2)	0	1	0	0	9	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32h	γ control (3)	0	1	0	0 🤞		> 0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33h	γ control (4)	0	1	0	6	0	0	5	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34h	γ control (5)	0	1	%	NC NO	0	0	0	PKN 12	PKN 11	PKN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35h	γ control (6)	0	1	2	0	0	(0)) 0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36h	γ control (7)	0	1	8	0	0	10-	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37h	γ control (8)	0	1	ŏ	0	2	1)0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3Ah	γ control (9)	0	2	0	0	\sim	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R3Bh	y control (10)	3	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00

Note: * means don't care

Software settings will override hardware pin (eg, BGR bits override BGR pin definition)

4.3.2 Register Function Description

0 1	7 L8	L5	L4	L3	L2	LI	LO	0	0	0	0	0	0	0	0
				Figu	ire 9.	1 Stat	us Rea	ad							
ie status r	ead ins	tructio	on rea	ads th	ne int	ernal	statu	is of t	he H)	(823	8-A.				
-0: Indica driver	ate the (n.	driving	g rast	ter-ro	w po	sition	wher	re the	e liqui	d cry	stal d	ispla	y is b	eing	
											~	0			
river Outp	ut Cont	rol (F	R01h)							0	n)	2			
iver Outp		rol (F	R01h) IB12 PIW	IB11 BGR	IB10 S M	IB9	IB8 CPE	187 0	IB6	185	(B4)	IB3	1B2 0	IB1 0	180 0
niverOutp w Ps ⊫e ₩ 1 0	ut Cont 15 1814 0 R L	IB13 REV	R01h) IB12 PIW Fig	IB11 BGR UTE 9.	IB10 SM	IB9 TB	IBS CPE	IB7 0 Contro		185		IB3 0	1B2 0	IB1 0	180 0
YN RS P W RS P W 1 0		IB13 REV	R01h) IB12 PNV Fig	IB11 BGR ure 9.	B10 SM 2 Driv	IB9 TB verO	IB8 CPE utput (IB7 0 Contro				IB3 0	B2 0	IB1 0	180 0
Priver Outp	ut Cont	(FOI (F	R01h) IB12 PNV Fig n is n	ure 9.	2 Driv	ver O wn, t	utput (out VC	B7 0 Contro	GL, a	ind V	cix2 a	IB3 0 are s	hut de	UB1 0 OWN.	180 0
Oriver Outp RW RS R W 1 0 CPE: When When REV: Displa	ut Cont), Vcir	R01h) IB12 Fig n is n emal	BII BGR ure 9. ot sh char(2 Driv 2 Driv ut do ge pu	ver O wn, t mp V	Utput (Out VC	B7 O Contro GH, V GH	GL, a	nes	cix2 a	are s	hut de	own.	IBO 0

enabled on normally white and normally black panels. Source output level is indicated below.

DEV	DCD data	Source output level						
NEV	nob uata	VCOM = "L"	VCOM = "H"					
	00000H	12No (1	V63					
1	3FFFFH	V63	Vio					
0	(00000H	V63	Vo					
	SEFFEH	NO	V63					

Table 9. 1 Source Output Level

- PINV: When PINV=0, POL output is same phase with internal VCOM signal. When PINV=1, POL output phase is reversed with VCOM signal.
- BGR: Selects the <R><G> arrangement. When BGR = "0" <R><G> color is assigned from S0.When BGR = "1" <G><R> color is assigned from S0.
- SM: Change the division of gate driver. When SM = "0", odd/even division (interlace mode) is selected. When SM = "1", upper/lower division is selected. Select the division mode according to the mounting method.
- TB: Selects the output shift direction of the gate driver. When TB = "1", G0 shifts to G239. When TB = "0", G239 shifts to G0.
- RL: Selects the output shift direction of the source driver. When RL = "1", S0 shifts to S959 and <R><G> color is assigned from S0. When RL = "0", S959 shifts to S0 and <R><G> color is assigned from S959. Set RL bit and BGR bit when changing the dot order of R, G and B.

Note: The default setting of register bits REV, BGR, TB and RL are defined by the logic stage of corresponding hardware pins. These bits will override the hardware setting once software command was sent to set the bits.

C

LCD-Driving-Waveform Control (R02h)

W 1 0 0 0 0 0 0 B/C 0 0 0 0 0	0 0	0 0

Figure 9. 4 LCD-Driving-Waveform Control

B/C: When B/C = 0, frame inversion of the LCD driving signal is enabled. When B/C = 1, line inversion waveform is generated

Power control 1 (R03h)

BW	RS	IB15	IB14	IB13	IB12	IB11	IB10	189	IB8	IB7	186	IB5	184	IB3	IB2	IB1	IB0
W	1	DCT3	DCT2	DCT1	DCTO	BTF	BT2	BT1	BLO	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0

Figure 9. 5 Power Control 1

DCT3-0: Set the step-up cycle of the step-up circuit for 8-color mode (CM = VDDIO). When the cycle is accelerated, the Vcim and Vcix2 driving ability of the step-up circuit increase, but their current consumption increase, too. Adjust the cycle taking into account the display quality and power consumption. VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DC	T2	D	CT1	D	CT0	Step-u	ip cycle
1	0	1000	0	270	20	/ Flin	ex/14
- 3	0		0	1	15	Flin	ex 12
_	0		10	1	0	Flin	ex 10
	0		360	1	1	Elin	\sim 8ké
- 3	1	1	0/	V.	0 /	~ VElio	ex7
- 2	1	10	$^{\circ}$		11	Flin	ex6
1	1	0	1/	1.1	0 /	∕/Flin	ex5
11	r~ .	2	1	N	d	Flin	ex4
1.1	0		0	5	0	Flin	ex3
V	2	/	0 /	1	Ċ,	Flin	ex2
_	0		1 [[\sum	0	Flin	ex1
	0	1	\mathcal{N}	1	1	Fline	x 0.5
1	1 ($\theta /$		0	Fline	x 0.25
- 2	1	11	0		1	Res	erved
1	1)	(-)	0	Res	erved
1	0	-	1	0	1	Res	erved

Table 9. 2 Step-up Cycle

BT2-0 & BTF: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power supply voltage to be used.

BTF	BT2	BT1	BT0	VGH output	VGL output
0	0	0	0	VCIX2j X 3	- (VCIX2j X 3) + VCI
0	0	0	1	VCX2jX 3	- (VCIX2j X 2)
0	0	1	0	VCIX2 j X 3	- (VCX2j X 3)
0	0	1	1	VCK2jX2+VCI	- (VCX2j X 2) - VCI
0	1	0	0	VCK2jX2+VCI	- (VC0/2j X 2)
0	1	0	1	VCK2jX2+VCI	- (VCIX2j X 2) + VCI
0	1	1	0	VCIX2j X 2	- (VCX2j X 2)
0	1	1	1	VCIX2j X 2	- (VCIX2j X 2) + VCI
1	X	х	X	VCIX2i X 3	 VCD/2j

Table 9. 3 VGH and VGL Booster Ratio

DC3-0: Set the step-up cycle of the step-up circuit for 262k-color mode (CM = VSS). When the cycle is accelerated, the Vcim and Vcix2 driving ability of the step-up circuit increase, but their current consumption increase, too. Adjust the cycle taking into account the display quality and power consumption. VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Flinex 14
0	0	0	3 1 3	Flinex 12
0	0	1	0	Flinex 10
0	0	1	1	Fline x 8
0	1	0	0	Fline x 7
0	1	0	1	Fline x 6
0	1	1	0	Fline x 5
0	1	1	1	Fline x 4
1	0	0	0	Fline x 3
1	0	0	1	Fline x 2
1	0	1	0	Eline x 1
1	0	1	1.	Fline x 0.5
1	1	0	0	Fline x 0.25
1	1	0	1/0	Reserved
1	1	1	1000	// Reserved
1	1	1 (110	Reserved

Table 9, 4 Step-up Cycle

AP2-0: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit. When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current taking into account the power consumption. During times when there is no display, such as when the system is in a sleep mode, set AP2-0 = "000" to halt the operational amplifier circuit and the step-up circuits to reduce current consumption.

0/10	AP2	AP1	AP0	Op-amp power
00	0	0	0	Least
205	0 / /	0	1	Small
	0.1	1	0	Small to medium
	0	1	1	Medium
V V	1)]	0	0	Medium to large
	V	0	া	Large
S	٩	1	0	Large to Maximum
	1	1	1	Maximum

Table 9. 5 Op-amp Power

Inpu	t Dat	a and	d Col	or Fi	lter C	ontr	ol (R	04h)	harrow						2027.02		
R/W	ß	B15	B14	IB13	IB12	IB11	IB10	IB9	IBB	187	IB6	IB5	IB4	IB3	IB2	IB1	E0
W	1	0	0	0	0	0	PALM	BLT1	BLTO	OEA1	OEA0	SEL2	SEL1	SELO	SWD2	SWD1	SWD0

Figure 9. 6 Input Data and Color Filter Control

SWD2-0: Control and switch the relationship between the R, G, B data and color filter type.

SEL2	SEL1	SELO	Format	Operating Frequency
0	0	0	Parallel-RGB data format (only support stripe type color filter)	6.5MHz
0	0	1 (Serial-RGB data format	19.5MHz
0	1	0	CCIB 656 data format (640RGB)	24.54MHz
0	1	(A)	CCIR 656 data format (720RGB)	27MHz
1	0	3	YUV mode A data format (Cr-Y-Cb-Y)	24.54MHz
1	0	V	YUV mode A data format (Cr-Y-Cb-Y)	27MHz
10	145	V 0	YUV mode B data format (Cb-Y-Cr-Y)	27MHz
1	(Y	1	YUV mode B data format (Cb-Y-Cr-Y)	24.54MHz

Input format	DOTCLK Freq (MHz)	Display Data	Active Area (DOTCLK)			
YUV mode	24.54	640	1280			
	27	720	1440			

Table 9. 7 Interface Type

OEA1-0: Odd/Even field advanced function.

OEA1	OEA0	
0	0	Display Start @ VBP delay for Odd field and @ VBP-1 for Even field.
0	1	Display Start @ VBP delay for Odd field and @ VBP for Even field.
1	0	Display Start @ VBP delay for Odd field and @ VBP+1 for Even field.
1	1	No use

Table 9. 8 Odd/Even Field Advanced Function

BLT [1:0]: Set the initial power on black image insertion time.

- 00: 10 fields
- 01: 20 fields

10: 40 fields

11:80 fields

PALM: Set the input data line number in PAL mode

0:280 lines

1:288 lines

Function Control (R05h)

Figure 9. 7 Function control

FB2-0: Set PWM feedback level adjustment.

000: 0.4V 001: 0.45V 010: 0.5V 011: 0.55V 100: 0.6V 101: 0.65V

110: 0.7V

- 111: 0.75V
- PWM: When PWM=0, PWM function is disabled. When PWM=1, PWM function is enabled.
- DIT: When DIT=0, dithering function is turned off. When DIT=1, dithering function is enabled.
- DEO: When DEO=0, VSYNC/HSYNC are also needed in DE mode. Under this condition, vertical back porch is defined by VBP [6:0] and the horizontal first valid data is defined by DE signal. When DEO=1, only DEN signal is needed in DE mode.
- HSP: When HSP=0, HSYNC is negative polarity. When HSP=1, HSYNC is positive polarity.
- VSP: When VSP=0, VSYNC is negative polarity. When VSP=1, VSYNC is positive polarity.
- CKP: When CKP=0, data is latched in CLK falling edge. When CKP=1, data is latched by CLK rising edge.
- DEP: When DEP=0, DEN is negative polarity active. When DEP=1, DEN is positive polarity active.

LPF: When LPF=0, the low pass filter function in YUV mode is disabled. When LPF=1, the low pass filter function is YUV mode is enabled.

GDIS: When GDIS=0, VGL has no discharge path to VSS in standby mode. When GDIS=1, VGL will discharge to VSS in standby mode. When CPE=0, GDIS is fixed to 0, and you can't change it by SPI.

XDK: When XDK=0, VCIX2 is 2 stage pumping from VCI. (VCIX2=3 x VCI) When XDK=1, VCIX2 is 2 phase pumping from VCI. (VCIX2=2 x VCI)

GHN: When GHN=0, all gate outputs are forced to VGH. When GHN=1, gate driver is normal operation.

	00.00	Beild ante ante of the obaroe output
0	0	1 us
0	1	3 us
i T	0	5 us
T	1	7 us
	0 1 1	0 0 0 1 1 0 1 1

Table 9. 10 Delay Amount of Source Output

C

EQ2-0: Sets the equalizing period EQ0 EQ2 EQ1 EQ period No EQ -0 0 0 0 0 1 3 us 0 4 us 0 0 5 us 0 0 6 us 1 1 1 7 us 1 0 8 us 1 9 us

Table 9. 11 EQ Period

Table 9. 14 No. of Pixel Per Line

Chunyan.Huang

Page18

2010/07/28

The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited.

版權屬於奇美電子所有 禁止任何未經授權的使用.

Reserved Reserved

The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.

~ (*0/*/

STH1-0: Adjust the first valid data by dot clock. This setting is not valid in parallel RGB input interface.

- STH = 00: +0 dot clock STH = 01: +1 dot clock
- STH = 10: +2 dot clock
- STH = 11: +3 dot clock
- VBP6-0: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period will be treated as dummy line. The setting is only effective in SYNC mode timing.

VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	Can't set
0	0	0	0	0	0	1	Can't set
0	0	0	0	0	1	0	2
0	0	0	0	0	1	10	3
0	0	0	0	1	0	A 000	1
	27 - 57	20 00	2 0	2 40	Ra	0	Step - 1
1 8	1	1		1	100	0	C()) 124
1	1	1	1	1	32		125
1	1	1	1	14	27	0 ((126
1	1	1	1	1/1	1	1 1 V	127

 Power Control 4 (R1Eh)

 RW
 RS
 B15
 IB14
 IB12
 IB11
 IB10
 IB9
 IB8
 IB7
 IB8
 IB5
 IB4
 IB3
 IB2
 IB1
 IB0

 W
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

nOTP: nOTP equals to "0" after power on reset and VCOMH voltage equals to programmed OTP value. When nOTP set to "1", setting of VCM6-0 becomes valid and voltage of VCOMH can be adjusted.

VCM6-0: Set the VCOMH voltage if nOTP = "1". These bits amplify the VCOMH voltage 0.36 to 0.995 times the VLCD63 voltage.

VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCMO	VCOMH
0	0	0	0	0	0	0	VLCD63 x 0.360
0	0	0	0	0	0	1	VLCD63 x 0.365
0	0	0	0	0	1	0	VLCD63 x 0.370
0	0	0	0	0	1	1	VLCD63 x 0.375
0	0	0	0	1	0	0	VLCD63 x 0.380
						:::	Step - 0.005
1	- 31	1	1	10	0	0	VLCD63 x 0.980
1	1	1	1	1	0	1	VLCD63 x 0.985
1	1	1	1	1	1	0	VLCD63 x 0.990
1	1	1	1	1	1	1	VLCD63 x 0.995

Note: 2V < VCOMH < VLCD63

Table 9. 17 VCOMH

Gamma Control 1 (R30h to R37h)

RW	RS	IB15	IB14	IB13	B12	IB11	IB10	IB9	BS.	B7	IB6	IB5	B4	B3	IB2	IB1	IBO
W	1	0	0	0	0	0	PKP1	PKP1	PKP1	0.1	0	-0	0	0	PKP0	PKPO	PKPC
W	1	0	0	0	0	0	PKP3	PKP3	PKP3	10	0 /	0	0	0	PKP2	PKP2	PKP2
W	1	0	0	0	0	0	PKP5	(PKPS)	PKP5	0	6 (01	0	0	PKP4	PKP4	PKP4
W	1	0	0	0	0	0	PRP1	_EB61/	P6P1	0	_0_	Š	0	0	PRPO	PRPO	PRP
W	1	0	0	0	0	0	PKN1/	-PKN1	_PKN1	0 /	~2	0	0	0	PKNO	PKN0	PKN
W	1	0	0	0	0	0	PKN3/	PKN2	PKN3	_0	0/	0	0	0	PKN2	PKN2	PNN:
W	1	0	0	0	0	0	PKN5	PKN5	PKN5	~ 0 \	1	0	0	0	PKN4	PKN4	PKN
W	1	0	0	0	0	0 /	PRNI	PRNI	PRN1	00	0	0	0	0	FRIND	PRNO	PAN

Figure 9. 21 Gamma Control 1

PKP52-00: Gamma micro adjustment registers for the positive polarity output. PRP12-00: Gradient adjustment registers for the positive polarity output. PKN52-00: Gamma micro adjustment registers for the negative polarity output. PRN12-00: Gradient adjustment registers for the negative polarity output.

Gamma Control 2 (R3Ah to R3Bh)

R/W	RS	(IB15)	IB14	IB18	B12	-1B1 1	B10	188	IB9	187	IB6	IB5	IB4	IB3	IB2	IB1	180
W	2	9	0	19	AUDIT-	-VRP13	VRP12	VRP11	VRPID	0	0	0	0	VREOS	VRP02	VRPOI	VRPOD
W N	(X)	3	0	2	VENI4	VEN13	VRM12	VEN11	VRMID	0	0	0	0	VENCE	VFN02	VEND	VENOD

Figure 9. 22 Gamma Control 2

VRP14-00: Adjustment registers for amplification adjustment of the positive polarity output.

VRN14-00: Adjustment registers for the amplification adjustment of the negative polarity output.

(Refer to Gamma Adjustment Function for details)

5. Reference Circuit

5.1 Interface reference circuit

Note: I_{LED}=V_{FB}/(R119//R120)

Page22 Chunyan.Huang 2010/07/28 The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited. 版權屬於奇美電子所有 禁止任何未經授權的使用. The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.

5.3 Vendor Recommend

ltem	Vendor	Туре	Remark				
LED Driver	Fiti Power	FP6745	PWM Frequency:100Hz~50KHz				

6. Suggestions For Housing Design

6.1 LCM corner /edge avoidable cutting.

If you design a avoidable cutting as the right drawing. LCM will easier to assemble in the housing. When you use the LCM with TSP, the cutting will avoid damage the edge or corner of TSP during the assembly.

Suggestions of housing design

6.2 Housing opening design guide.

6.2.1 With TSP

Because touch film is made of flexible PET, any unexpected touch with it would cause malfunction of touch panel. So here a sponge between touch panel and plastic housing is recommended for users. And the drawing will show you how to design the housing and sponge.

Section sketch (with TSP)

Notes: 1. X is the distance from LCM A.A to housing opening.

- 2. Y is the distance from TSP V.A to Sponge opening.
- 3. The active force will be bigger when you touch the area near the housing opening.
- 4. If you want to provide more protection for LCM, you can add same buffer material on the bottom of LCM.

Section sketch(without TSP)

- Notes: 1. Housing opening mast bigger than LCMA.A and cover the bezel .
 - 2. If you want to provide more protection for LCM, you can add same buffer material on the top or bottom of LCM.

7. Demo Board Introduce

7.1 Interface of Demo Bard

Chunyan.Huang The copyright belongs to Chimei Innolux . Any unauthorized use is prohibited. 版權屬於奇美電子所有 禁止任何未經授權的使用. The copyright belongs to Chimei InnoLux . Any unauthorized use is prohibited.