

言公別青技标祠国华宇 THU3 INT,L Technology Co., LIMITED

SPECIFICATION FOR MODULE

	Approved By		Срескед Ву			
		NO A	CCM Displ			
em snlagy:	NG , Probl		Срескед Ву			
	ГСИ ОК	MO vrani	П ССМ Масh			
	proval by Customer					
Approved by	скед рд	Che	Designed by			
			Sample code:			
	035MQ5401	H.A.	Product Model:			
			: Jəmoisu			

☼The specification of "TBD" should refer to the measured value of sample . If there is difference between the

design specification and measured value, we naturally shall negotiate and agree to solution with customer.

Revision History

<u> </u>			
<u> </u>			
	2013.01.23	lsniginO	¥
910N	Date	Contents	Version

Contents

31	Mechanical Drawing	٦.
† Ι	6.5. Cleaning	
V L	6.4. Storage	
ħΙ	6.3. Static Electricity	
† Ι	.2.2 Handling	
, ,	6.1. Safety	
⊅ l	General Precautions	.9
٤١	Reliability Test Items	.∂
6	Optical Specifications	٦.
8	3.3.4. Data Input Format	
_	3.5.5. Data Input TiminggnimiT tuqnI sta G.6.6.6	
9	3.3.2. Serial Transmission mode	
ζ	3.3.1. Serial mode timing &clock	
ζ	3.3. Timing Characteristics	
ζ	3.2. Power Sequence	
<i>†</i>	3.1.2. Backlight Driving Conditions	
₹	3.1.1. Typical Operation Conditions	
₹	3.1. Absolute Maximum Ratings	
7	Operation Specifications	.ε
2	Pin Assignment	2.
L	General Specifications	٦.

1. General Specifications

13	Weight	TBD	
15	Panel power consumption	TBD	
II	Backlight power consumption	TBD	
10	Interface	[Estigid]	
6	Color arrangement	PGB-stripe	
8	Surface treatment	916-Glare	
L	9zis 9luboM	mm (Q)82.£× (H) \$8× (W)6.87	I ətoN
9	Астіче ягея	mm (H) 32.22 × (W) 80.07	
ς	Рот рітсһ	mu (H)912× (W)912	
au	Display mode	Normally White, Transmissive	
ε	Resolution	$370 \times 3(BCB) \times 740$	
7	Driver element	a-Si TFT active matrix	
I	LCD size	3.5 inch(Diagonal)	
.oV	тэл	Specification	Кетагк

Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

Red data	R2	30
Red data	R1	67
Red data(LSB)	В0	87
Green data(MSB)	<i>L</i> 5	<i>L</i> 7
Green data	99	97
Green data	G2	52
Green data	Ct	7 7
Green data	C3	53
Green data	C7	77
Green data	СI	17
Green data(LSB)	C0	07
Blue data(MSB)	LΊ	61
Blue data	B 8	81
Blue data	B2	LI.
Blue data	B¢	91
Blue data	B3	SI
Blue data	B 7	14
Blue data	BI	EI
Blue data(LSB)	B 0	17
Serial data	IOS	II
Serial clk	SCK	10
Serial data enable	CZ	6
Reset	KEZEL	8
No connect	NC	L
No connect	NC	9
No connect	NC	S
Power for LED	AFED	t
Power for LED	AFED	ε
CND for LED	CFED	7
CND for LED	CFED	ī
	44.10	۴

Page:3/20

Ground	CND	75
Ground	СИD	53
Data enabling signal	DE	25
No connect	NC	15
No connect	SET0	20
No connect	SEL1	6 †
No connect	ZEF7	87
No connect	NC	Lħ
No connect	NC	97
No connect	NC	St
No connect	NC	
No connect	NC	£\$
Digital power supply(+3.3V)	ADD	77
Digital power supply(+3.3V)	ADD	ΙÞ
No connect	NC	07
No connect	NC	68
Data clk	CFK	38
Vertical synchronous signal	SΛ	Lε
Horizontal synchronous signal	SH	36
Red data(MSB)	К7	32
Red data	В6	34
Red data	ВЗ	33
Red data	В¢	35
Red data	K3	18
Z\E:9gs9		

ser 2-0: Define the input interface mode.

Operating Frequency	Format	ZETO	ZELI	ZETS
Parallel-RGB data format 6.5MHz (only support stripe type color filter)		0	0	0
zHM3.91	Serial-RGB data format	1	0	0
ZHM42.4S	CCIR 656 data format (640RGB)	0	į.	0
ZHM72	CCIR 656 data format (720RGB)	l l	Į,	0
ZHM42,4S	YUV made A data format (Cr-Y-Cb-Y)	0	0	Į.
ZHM7S	YUV mode A data format (Cr-Y-Cb-Y)	l l	0	l.
ZHM7S	YUV mode B data format (Cb-Y-Cr-Y)	0		1
Z4.54MHz	YUV mode B data format (Cb-Y-Cr-Y)	ı	l.	1

Operation Specifications

2.1. Absolute Maximum Ratings

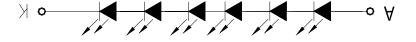
(I ətoN)

า สอเม ช <u>ผู</u>	Values Unit Remark		<u>lsV</u>	lodmyS	шәұ
A IbiliaM	11110	Max.	.niM	1001114C	шэн
	Λ	0.8	€.0-	$\Lambda^{ m DD}$	Supply voltage
	Э.	09	07-	$_{ m qO}{ m T}$	Operation Temperature
	Э.	04	-30	$_{ m TZ}{ m T}$	Storage Temperature
R ^o ch LED	Λ	ς	-	ΛК	LED Reverse Voltage
Е ⁹ СР ГЕD	Аш	72	-	Ы	LED Forward Current

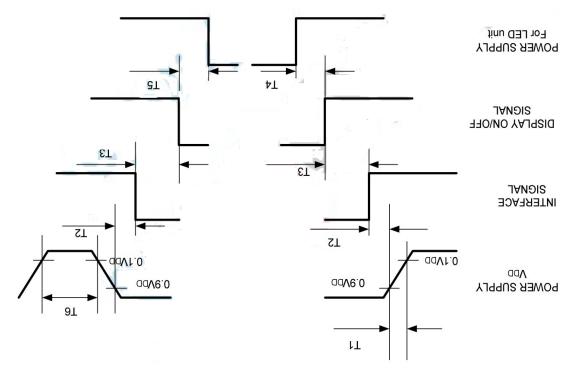
Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: VR Conditions: Zener Diode 20mA

2.1.1. Typical Operation Conditions

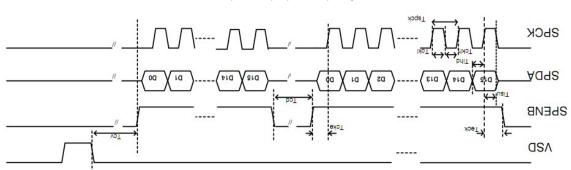

2µomod	*;u]1		values		lodans	
Кетагк	in∪	.xsM	qųT	.niM	Symbol	məH
Vote 2	Λ	9.£	5.5	0.£	$\Lambda^{ m DD}$	Power voltage
	Аш	52	LI	-	$1\Lambda^{DD}$	Current for Driver
Moto 3	Λ	Λ^{DD}	1	$_{ m QQ}$ V 8.0	$^{ m HI}\Lambda$	finput logic high voltage
Vote 3	Λ	0.2 V_{DD}	-	0	$\Lambda^{\rm I\Gamma}$	Input logic low voltage

2.1.2. Backlight Driving Conditions


Кетагк	3inU	Max.	.qvT	.niM	lodmys	цеш
I stoM	Λ	17	2.91		Λ^{Γ}	Voltage for LED backlight
	Аш	72	50		I^{Γ}	Current for LED backlight
Vote 2	тН	1	000,02	1	-	LED life time

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25% and $I_L=20mA$. The LED lifetime could be decreased if operating I_L is lager than 20mA.

LED CIRCUIT


2.2. Power Sequence

or> common	9T	0 <t3<10msec< th=""><th>£L</th></t3<10msec<>	£L
ZT≫əsm001	ξŢ	o⊜RT2≪10msec	T.S
160msec≪T4	⊅ T	0≪Tl≪lOmsec	ΙΤ
Specification	lodmyS	Specification	Symbol

2.3. Timing Characteristics

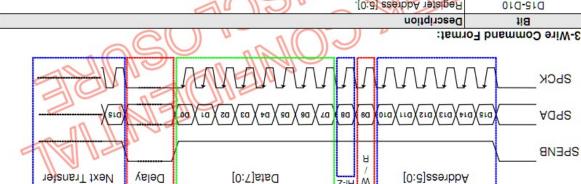
2.3.1. Serial mode timing &clock

3-Wire Timing Diagram

	su	1.41	=	120	Тске	SPENB input hold time
	su	-	-	120	Теск	SPENB input setup time
	sn	V.	-	ŀ	νoΤ	SPENB to VSD
	sn	(- 9	= 1	ļ	DoT	Chip select distinguish
	su	(-)	-	150	Tckh/I	Serial clock high/low
	su	121	=	150	PHiT	Serial data hold time
	su	2	20	150	usiT	Serial data setup time
	%	09	20	07		SPCK pulse duty
	su	-	-	320	Тѕрск	Serial clock
3-wire serial communication AC timing						

2.3.2. Serial Transmission mode

3-Wire Serial Port Interface (Default Register Map)

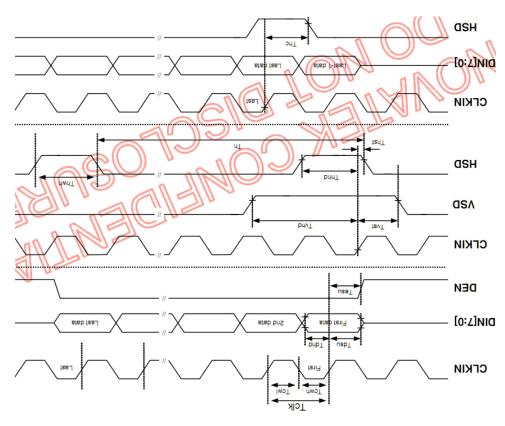

3-Wire Command Format

NT39016 uses the 3-wire serial port as communication interface for all the function and parameter setting. 3-Wire communication can be bi-directional controlled by the "R/W" bit in address field. NT39016 3-Wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-Wire bus itself.

sot as a "slave mode" for all the time, and will not issue any command to the 3-Wire bus itself.

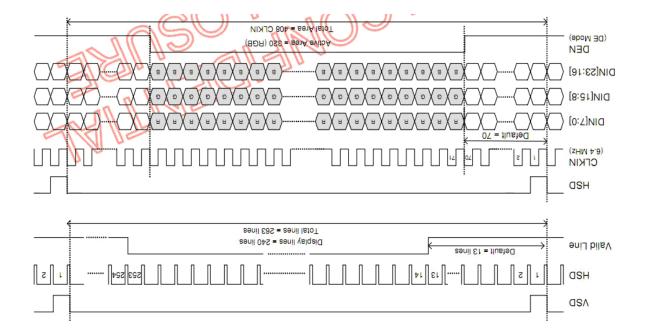
Under read mode, 3-Wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SPCK by external controller. Data in the "Hi-Z phase" will be ignored by 3-Wire engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SPDA pin under "Hi-Z phase" and "Data phase".

Refer to the section of "3-Wire Timing Diagram" for the detail timing, please.



Describțion)ia
Register Address [5:0].	D15-D10
W.R. control bit. "1" for Write; "0" for Read	D9
ebom est during read mode. And data within this bits bill be ignored during write mode	8G
Data for the W/R operation to the address indicated by Address phase	00-20
	7 10 11 11 11

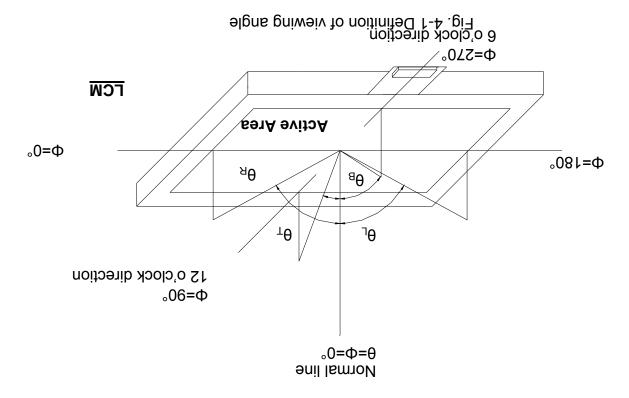
	DATA (Issue by external controller)							X	L		[0:	dress [5	bA neta	Regi	
DO	Ια	DS	D3	Dt	DS	90	ZQ	8 Q	D3	D10	LIG	D12	D13	DIT	D15
ESB		- 177		1.1111		-1					0	1 11			WSB
											111/2	1: 16	Forma	Writer	3-Wire
									n	((11 //	0	-	((1111


	(3f0gETM vd eussl) ATAQ						Z-!H	0		[0:3	dress [5	bA retei	Red		
DO	Ιđ	DS	D3	D¢	D2	De	Za	8 a	6 0	D10	IIa	D12	D13	D14	D15
ESB						-		100						Argress Supp	MSB
												:	-ormai	Read F	3-WIRE

2.3.3. Data Input Timing

DEN 10 CLKIN)) su	~ 1	((-))	15	bseT	DEN setup time
DIN[23:0] 10 CLKIN	su	NIN		10	рчрТ	Data hold time
DIN[53:0] (O CLKIN	su	3111	2	8	nspT	Data set-up time
	su	7	6	10	рччт	emit blod QSH
	SU		8	8	That	HSD setup time
	su	-		10	bdvT	9mit blod Q2V
1// // // 02	su	12	÷	8	tsvT	emit qutes Q2V
	sn	Z 9	95.59	09	Ч⊥	HSD period time
11 19 2	ЧΤ			ı	Tvwh	VSD width
U	СГКІИ	-	*	1	цмц_	dtbiw QSH
	СГКІИ	ı			Thc	H2D ₽ CLKIN
Please refer to timing table(p.32)	su	-	α.	33.3/125	Tclk	CLKIN clock time
						BnimiT fuqfuO fuqnl

2.3.4. Data Input Format


Conditions	tinU	Max.	.qyT	.niM	Symbol	Parameter //
V∂.5~ 0.5 = QQV	zHM	0.8	4.8	1.3	Fclk	CLKIN frequency
	su	164	126	152	TCIK	CLKIN cycle time
TcIK	%	09	09	07	Tcwh	CLKIN pulse duty
(bexit) 0 - testto 05- V IOO	CI KIN	טעע	02	UV	SYL	(D2TM)tuggi steb to't of (I2H tedt emiT

3. Optical Specifications

Remark	tinU		Values		noiiibnoO	Symbol	mətl
		Max.	n. Typ. Max.				
		-	97	-	Ф=180。(6 о,сроск)	٦θ	
l ətoM	θουρθή	-	97	-	Ф=0°(3 о'сюск)	Яθ	9lgns gniwəi√
1 91041	qedree	-	0۷	-	Ф=60。(15 о,соск)	$_{ au} heta$	(CK≥ 10)
		-	97	-	Ф=270°(6 о'сюск)	а	
E ətoM	nsec	20	01	-		νοΤ	Pesnonse time
E ətoM	nsec	20	01	-		T _{OFF}	Response time
4 əjoN	-	-	004	200		СВ	Contrast ratio
S əjoN	-	98.0	15.0	92.0	Normal 0=Φ=0°	×M	14,0,4000040
3 ətoN 3 ətoN	-	88.0	££.0	82.0		۲M	Color chromaticity
9ətoM	cd/m2	-	S20		-	٦	Luminance
7 əjoN	%	-	97	04		۸	Luminance uniformity

Test Conditions:

^{1.} V_{DD} =3.3V, I_L=20mA (Backlight current), the ambient temperature is 25°C. 2. The test systems refer to Note 2.

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured by Photo detector TOPCON BM-7, other screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

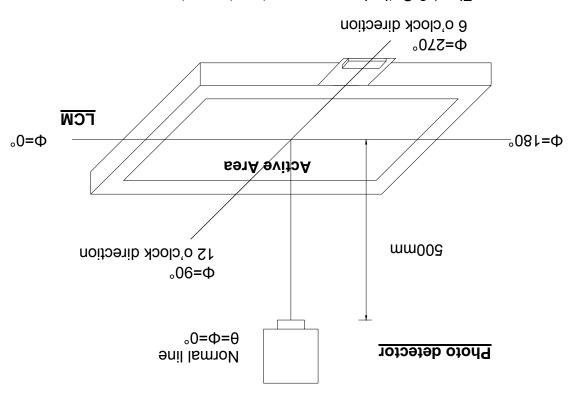


Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

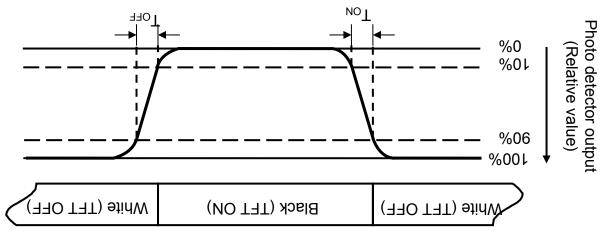


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD on the "White" state Luminance measured when LCD on the "Black" state

Note 5: Definition of color chromaticity (CIE1931)
Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is $I_L=120mA$.

Note 7: Definition of Luminance Uniformity
Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Sasuring point is piaced at the center of earth
$$B_{max} = B_{min}$$

L------Active area length W----- Active area width

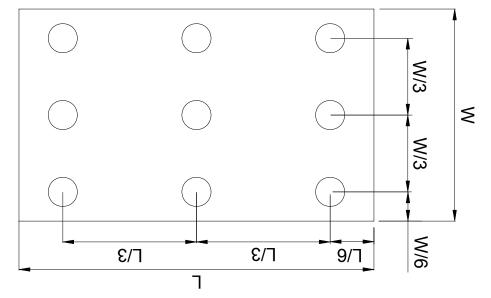


Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

4. Reliability Test Items

(SətoM)

	านุรс62	Height:60 cm 1 corner, 3 edges, 6 s	Package Drop Test
		Random Vibration : 0.015G*G/Hz from 5-2 from 500-500HZ from 200 sach direct hours for total)	Package Vibration Test
	3 times for each	100G 6ms,±X, ±Y, ±Z direction	Mechanical Shock
	ZH0	Frequency range:10~! Stroke:1.5mm Sweep:10Hz~55Hz~1 2 hours for each direc (6 hours for total)	Vibration Test
4 ∋ĵoN	temperature and end	-30 $^{\circ}$ C/30 min ~ +70 $^{\circ}$ C, cycles, Start with cold with high temperature	ТһегтаІ Ѕһоск
4 əjoN	240hrs	+40%; 90%КН	Operate at High Temperature and Humidity
4 ejoN , l ejoN	240hrs	7a = -20°C	Low Temperature Operation
Mote 2, Note 4	240hrs	ე. 0 ∠ = s T	High Temperature Operation
4 ejoN , l ejoN	240hrs	7a = -30°C	Low Temperature Storage
4 ejoN , l ejoN	240hrs	7°08 = 8T	High Temperature Storage
Кетаrk	snoifibne	oO tesT	məəl

Note 1: Ta is the ambient temperature of samples. Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation,

but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time,

at least 2 hours at room temperature.

5. General Precautions

Safety 5.1.

skin or clothes, wash it off immediately by using soap and water. Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your

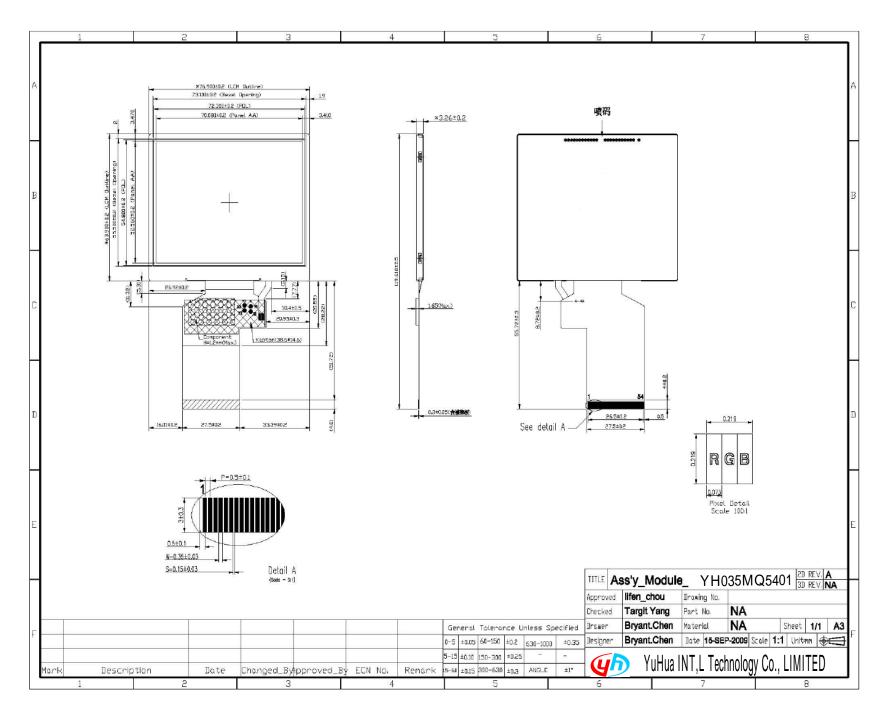
Bandling 5.2.

- excessive force on its surface. 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to
- The polarizer attached to the display is easily damaged. Please handle it
- carefully to avoid scratch or other damages.
- with bare hands. 3. To avoid contamination on the display surface, do not touch the module surface
- 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect
- 6. Transparent electrodes may be disconnected if you use the LCD panel under panel from damages.
- environmental conditions where the condensation of dew occurs.
- 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

Static Electricity 5.3.

- Be sure to ground module before furning on power or operating module.
- Do not apply voltage which exceeds the absolute maximum rating value.

Storage .4.8


- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or
- 2. Do not store the module in surroundings containing organic solvent or corrosive 'ssəl
- Store the module in an anti-electrostatic container or bag. gas.

Cleaning .6.6

- Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might

permanent damage to the polarizer.

6. Mechanical Drawing

